The Price of Anarchy in Auctions
Part I: Introduction and Motivation

Jason Hartline
Northwestern University

Vasilis Syrgkanis
Cornell University

December 11, 2013
Single-item Auction Problem:

Given:

- one item for sale.
- \(n \) bidders (with unknown private values for item, \(v_1, \ldots, v_n \))
- Bidders’ objective: maximize utility = value \(-\) price paid.

Design:

- Auction to solicit bids and choose winner and payments.
Single-item Auction Problem:

Given:

- one item for sale.
- \(n \) bidders (with unknown private values for item, \(v_1, \ldots, v_n \))
- Bidders’ objective: maximize utility = value − price paid.

Design:

- Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

- Maximize social welfare, i.e., the value of the winner.
- Maximize seller revenue, i.e., the payment of the winner.
The First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner her bid.
The First-price Auction

First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner her bid.

Question: How should you bid?
Uniform Distribution: draw value v uniformly from the interval $[0, 1]$.
Uniform Distribution: draw value v uniformly from the interval $[0, 1]$.

Cumulative Distribution Function: $F(z) = \text{Pr}[v \leq z] = z$.

Probability Density Function: $f(z) = \frac{1}{dz} \text{Pr}[v \leq z] = 1$.
Uniform Distribution: draw value \(v \) uniformly from the interval \([0, 1]\).

Cumulative Distribution Function: \(F(z) = \Pr[v \leq z] = z \).

Probability Density Function: \(f(z) = \frac{1}{dz} \Pr[v \leq z] = 1 \).
Uniform Distribution: draw value v uniformly from the interval $[0, 1]$.

Cumulative Distribution Function: $F(z) = \Pr[v \leq z] = z$.
Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \leq z] = 1$.

Expectation: $E[v] = \int_0^\infty v f(v) \, dv = \int_0^\infty (1 - F(v)) \, dv$
Uniform Distribution: draw value v uniformly from the interval $[0, 1]$.

Cumulative Distribution Function: $F(z) = \Pr[v \leq z] = z$.

Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \leq z] = 1$.

Expectation: $E[v] = \int_0^\infty v f(v) \, dv = \int_0^\infty (1 - F(v)) \, dv$
Uniform Distribution: draw value v uniformly from the interval $[0, 1]$.

Cumulative Distribution Function: $F(z) = \Pr[v \leq z] = z$.

Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \leq z] = 1$.

Expectation: $E[v] = \int_0^\infty v f(v) \, dv = \int_0^\infty (1 - F(v)) \, dv = 1/2$
First-price Auction: Symmetric Dists

Example: two bidders (you and me), uniform values.
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
First-price Auction: Symmetric Dists

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- **How should you bid?**
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What’s your expected utility with value v and bid b?

$$E[\text{utility}(v, b)] = (v - b) \times \Pr[\text{you win}]$$
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What’s your expected utility with value v and bid b?

$$E[\text{utility}(v, b)] = (v - b) \times \Pr[\text{you win}]$$

$$\Pr[\text{my bid} \leq b] = \Pr[\frac{1}{2} \text{my value} \leq b] = \Pr[\text{my value} \leq 2b] = F(2b) = 2b$$
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What’s your expected utility with value v and bid b?

$$E[\text{utility}(v, b)] = (v - b) \times \text{Pr[you win]}$$

$$\text{Pr[my bid } \leq b] = \text{Pr}\left[\frac{1}{2} \text{ my value } \leq b\right] = \text{Pr[my value } \leq 2b] = F(2b) = 2b$$

$$= (v - b) \times 2b$$

$$= 2vb - 2b^2$$
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What’s your expected utility with value v and bid b?

\[
E[\text{utility}(v, b)] = (v - b) \times \Pr[\text{you win}]
\]

\[
\Pr[\text{my bid} \leq b] = \Pr\left[\frac{1}{2} \text{ my value} \leq b\right] = \Pr[\text{my value} \leq 2b] = F(2b) = 2b
\]

\[
= (v - b) \times 2b
\]

\[
= 2vb - 2b^2
\]

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What’s your expected utility with value v and bid b?

\[
\mathbb{E}[\text{utility}(v, b)] = (v - b) \times \Pr[\text{you win}]
\]

\[
\Pr[\text{my bid} \leq b] = \Pr[\frac{1}{2} \text{ my value} \leq b] = \Pr[\text{my value} \leq 2b] = F(2b) = 2b
\]

\[
= (v - b) \times 2b
\]

\[
= 2vb - 2b^2
\]

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid $b = v/2$ (bid half your value!)
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What’s your expected utility with value v and bid b?

$$E[\text{utility}(v, b)] = (v - b) \times \Pr[\text{you win}]$$

$$\Pr[\text{my bid} \leq b] = \Pr[\frac{1}{2} \text{ my value} \leq b] = \Pr[\text{my value} \leq 2b] = F(2b) = 2b$$

$$= (v - b) \times 2b$$

$$= 2vb - 2b^2$$

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid $b = v/2$ (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium.
Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What’s your expected utility with value \(v \) and bid \(b \)?

\[
E[\text{utility}(v, b)] = (v - b) \times \Pr[\text{you win}]
\]

\[
\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2} \text{ my value } \leq b] = \Pr[\text{my value } \leq 2b] = F(2b) = 2b
\]

\[
= (v - b) \times 2b
\]

\[
= 2vb - 2b^2
\]

- to maximize, take derivative \(\frac{d}{db} \) and set to zero, solve
- optimal to bid \(b = v/2 \) (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium.
Conclusion 2: bidder with highest value wins
Conclusion 3: first-price auction maximizes social welfare!
Questions?
Bayes-Nash equilibrium (BNE)

Def: a *strategy* maps value to bid, i.e., $b_i(v_i)$.
Bayes-Nash equilibrium (BNE)

Def: a strategy maps value to bid, i.e., \(b_i(v_i) \).

Def: the common prior assumption: bidders’ values are drawn from a known distribution, i.e., \(v_i \sim F_i \).
Bayes-Nash equilibrium (BNE)

Def: a *strategy* maps value to bid, i.e., $b_i(v_i)$.

Def: the *common prior assumption*: bidders’ values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Definition: a *strategy profile* is in *Bayes-Nash Equilibrium (BNE)* if for all i, $b_i(v_i)$ is best response when others play $b_j(v_j)$ and $v_j \sim F_j$.
Example: two bidders, $v_1 \sim U[0, 1]$, $v_2 \sim U[0, 2]$
First-price Auction: Asymmetric

Example: two bidders, $v_1 \sim U[0, 1]$, $v_2 \sim U[0, 2]$

- $b_1(v) = \frac{2}{3v} (2 - \sqrt{4 - 3v^2})$
- $b_2(v) = \frac{2}{3v} (-2 + \sqrt{4 + 3v^2})$
Example: two bidders, $v_1 \sim U[0, 1]$, $v_2 \sim U[0, 2]$
Example: two bidders, \(v_1 \sim U[0, 1], v_2 \sim U[0, 2] \)

- \(b_1(v) = \frac{2}{3v} (2 - \sqrt{4 - 3v^2}) \)
- \(b_2(v) = \frac{2}{3v} (-2 + \sqrt{4 + 3v^2}) \)

- highest-valued agent may not win in BNE \(\Rightarrow \) PoA > 1.

Asymmetric Equilibrium Solutions:
Example: two bidders, $v_1 \sim U[0, 1], v_2 \sim U[0, 2]$

- $b_1(v) = \frac{2}{3v} (2 - \sqrt{4 - 3v^2})$
- $b_2(v) = \frac{2}{3v} (-2 + \sqrt{4 + 3v^2})$

- highest-valued agent may not win in BNE \Rightarrow PoA > 1.

Asymmetric Equilibrium Solutions:

- one uniform bidder, one constant bidder [Vickrey '61]
Example: two bidders, $v_1 \sim U[0, 1]$, $v_2 \sim U[0, 2]$

- $b_1(v) = \frac{2}{3v} (2 - \sqrt{4 - 3v^2})$
- $b_2(v) = \frac{2}{3v} (-2 + \sqrt{4 + 3v^2})$

- highest-valued agent may not win in BNE \Rightarrow PoA > 1.

Asymmetric Equilibrium Solutions:

- one uniform bidder, one constant bidder [Vickrey ’61]
- $U[\alpha, \beta_1]$, $U[\alpha, \beta_2]$ [Greismer et al ’67]
First-price Auction: Asymmetric

Example: two bidders, $v_1 \sim U[0, 1]$, $v_2 \sim U[0, 2]$

- $b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$
- $b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$

- highest-valued agent may not win in BNE \Rightarrow PoA > 1.

Asymmetric Equilibrium Solutions:

- one uniform bidder, one constant bidder [Vickrey '61]
- $U[\alpha, \beta_1], U[\alpha, \beta_2]$ [Greismer et al '67]
- $U[\alpha_1, \beta_1], U[\alpha_2, \beta_2]$. [Kaplan, Samier '12]
First-price Auction: Asymmetric

Example: two bidders, \(v_1 \sim U[0, 1], v_2 \sim U[0, 2] \)

- \(b_1(v) = \frac{2}{3v} (2 - \sqrt{4 - 3v^2}) \)
- \(b_2(v) = \frac{2}{3v} (-2 + \sqrt{4 + 3v^2}) \)

- highest-valued agent may not win in BNE \(\Rightarrow \) PoA > 1.

Asymmetric Equilibrium Solutions:

- one uniform bidder, one constant bidder [Vickrey ’61]
- \(U[\alpha, \beta_1], U[\alpha, \beta_2] \) [Greismer et al ’67]
- \(U[\alpha_1, \beta_1], U[\alpha_2, \beta_2] \). [Kaplan, Samier ’12]

Notes: solved by differential equation, 50 years to solve general uniform case, only for two bidders.
First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner her bid.
First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner her bid.

Classic Analysis:

1. solve for equilibrium.

2. interpret quality of equilibrium. (e.g., for welfare or revenue)
Classic Analysis vs Price of Anarchy

First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner her bid.

Classic Analysis:

1. solve for equilibrium.
 - bidder strategies not obvious.
 - challenge: asymmetric distributions.
 - challenge: generalizations of single-item auctions.
 - challenge: other auctions run at same time.

2. interpret quality of equilibrium. (e.g., for welfare or revenue)
Classic Analysis vs Price of Anarchy

First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner her bid.

Classic Analysis:

1. solve for equilibrium.
 - bidder strategies not obvious.
 - challenge: asymmetric distributions.
 - challenge: generalizations of single-item auctions.
 - challenge: other auctions run at same time.

2. interpret quality of equilibrium. (e.g., for welfare or revenue)

PoA Analysis: quantify performance without solving for equilibrium.
Questions?
Thm: for all distributions and BNE the first-price auction satisfies

$$\mathbb{E}[\text{BNE welfare}] \geq \frac{1}{2} \mathbb{E}[\text{OPT welfare}]$$
Thm: for all distributions and BNE the first-price auction satisfies
\[\mathbb{E}[\text{BNE welfare}] \geq \frac{1}{2} \mathbb{E}[\text{OPT welfare}] \]

Proof Outline:
1. Decompose \(\mathbb{E}[\text{BNE welfare}] = \mathbb{E}[\text{BNE utilities}] + \mathbb{E}[\text{BNE revenue}] \).
The Price of Anarchy

Thm: for all distributions and BNE the first-price auction satisfies
\[\mathbb{E}[\text{BNE welfare}] \geq \frac{1}{2} \mathbb{E}[\text{OPT welfare}] \]

Proof Outline:

1. Decompose \(\mathbb{E}[\text{BNE welfare}] = \mathbb{E}[\text{BNE utilities}] + \mathbb{E}[\text{BNE revenue}] \).
2. Lowerbound BNE utility by deviation utility
 \[\Rightarrow \mathbb{E}[\text{bidder’s BNE utility}] \geq \mathbb{E}[\text{utility from deviation}] \]
Thm: for all distributions and BNE the first-price auction satisfies

\[E[BNE \text{ welfare}] \geq \frac{1}{2} E[OPT \text{ welfare}] \]

Proof Outline:

1. Decompose \(E[BNE \text{ welfare}] = E[BNE \text{ utilities}] + E[BNE \text{ revenue}] \).
2. Lowerbound BNE utility by deviation utility
 \[\Rightarrow E[\text{bidder’s BNE utility}] \geq E[\text{utility from deviation}] \]
 \[u_i(v_i, b_i(v_i)) \geq u_i(v_i, b'_i) \]
The Price of Anarchy

Thm: for all distributions and BNE the first-price auction satisfies
\[
E[BNE\ welfare] \geq \frac{1}{2} E[OPT\ welfare]
\]

Proof Outline:

1. Decompose \(E[BNE\ welfare] = E[BNE\ utilities] + E[BNE\ revenue] \).
2. Lowerbound BNE utility by deviation utility
 \[\Rightarrow E[\text{bidder’s BNE utility}] \geq E[\text{utility from deviation}] \]
 \[u_i(v_i, b_i(v_i)) \geq u_i(v_i, b_i'(v_i)) \]
3. *deviation covering lemma:* if bidder \(i \) deviates to \(b_i' = v_i/2 \)
Thm: for all distributions and BNE the first-price auction satisfies
\[E[BNE \text{ welfare}] \geq \frac{1}{2} E[\text{OPT welfare}] \]

Proof Outline:

1. Decompose \[E[BNE \text{ welfare}] = E[BNE \text{ utilities}] + E[BNE \text{ revenue}] \].

2. Lowerbound BNE utility by deviation utility
 \[\Rightarrow E[\text{bidder's BNE utility}] \geq E[\text{utility from deviation}] \]
 \[u_i(v_i, b_i(v_i)) \geq u_i(v_i, b'_i) \]

3. *deviation covering lemma*: if bidder \(i \) deviates to \(b'_i = v_i / 2 \)
 \[\Rightarrow u_i(v_i, v_i/2) + E[BNE \text{ revenue}] \geq \frac{1}{2} v_i \]
Thm: for all distributions and BNE the first-price auction satisfies
\[E[BNE \text{ welfare}] \geq \frac{1}{2} E[\text{OPT welfare}] \]

Proof Outline:

1. Decompose \(E[BNE \text{ welfare}] = E[BNE \text{ utilities}] + E[BNE \text{ revenue}] \).

2. Lowerbound BNE utility by deviation utility
 \[\Rightarrow \quad E[\text{bidder's BNE utility}] \geq E[\text{utility from deviation}] \]
 \[u_i(v_i, b_i(v_i)) \geq u_i(v_i, b'_i) \]

3. *deviation covering lemma:* if bidder \(i \) deviates to \(b'_i = v_i / 2 \)
 \[\Rightarrow \quad u_i(v_i, v_i/2) + E[BNE \text{ revenue}] \geq \frac{1}{2} v_i \]

In English: either utility from deviation or revenue is high, relative to value.
The Price of Anarchy

Thm: for all distributions and BNE the first-price auction satisfies

\[E[BNE \text{ welfare}] \geq \frac{1}{2} E[OPT \text{ welfare}] \]

Proof Outline:

1. Decompose \(E[BNE \text{ welfare}] = E[BNE \text{ utilities}] + E[BNE \text{ revenue}] \).

2. Lowerbound BNE utility by deviation utility

\[E[\text{bidder's BNE utility}] \geq E[\text{utility from deviation}] \]

\[u_i(v_i, b_i(v_i)) \geq u_i(v_i, b'_i) \]

3. **deviation covering lemma:** if bidder \(i \) deviates to \(b'_i = \frac{v_i}{2} \)

\[u_i(v_i, \frac{v_i}{2}) + E[BNE \text{ revenue}] \geq \frac{1}{2} v_i \]

In English: either utility from deviation or revenue is high, relative to value.

4. Scale relative to \(x^*_i(v_i) = Pr[v_i \text{ wins in OPT}] \)
Thm: for all distributions and BNE the first-price auction satisfies
\[E[BNE \text{ welfare}] \geq \frac{1}{2} E[OPT \text{ welfare}] \]

Proof Outline:

1. Decompose \(E[BNE \text{ welfare}] = E[BNE \text{ utilities}] + E[BNE \text{ revenue}] \).

2. Lowerbound BNE utility by deviation utility
 \[\Rightarrow E[\text{bidder's BNE utility}] \geq E[\text{utility from deviation}] \]
 \[u_i(v_i, b_i(v_i)) \geq u_i(v_i, b'_i) \]

3. **deviation covering lemma:** if bidder \(i \) deviates to \(b'_i = v_i / 2 \)
 \[\Rightarrow u_i(v_i, v_i/2) + E[BNE \text{ revenue}] \geq \frac{1}{2} v_i \]
 In English: either utility from deviation or revenue is high, relative to value.

4. Scale relative to \(x^*_i(v_i) = Pr[v_i \text{ wins in OPT}] \)
 \[\Rightarrow u_i(v_i, v_i/2) + E[BNE \text{ revenue}] x^*_i(v_i) \geq \frac{1}{2} v_i x^*_i(v_i) \]
Thm: for all distributions and BNE the first-price auction satisfies
\[E[BNE \text{ welfare}] \geq \frac{1}{2} E[OPT \text{ welfare}] \]

Proof Outline:

1. Decompose \[E[BNE \text{ welfare}] = E[BNE \text{ utilities}] + E[BNE \text{ revenue}] \].

2. Lowerbound BNE utility by deviation utility
 \[\Rightarrow E[\text{bidder's BNE utility}] \geq E[\text{utility from deviation}] \]
 \[u_i(v_i, b_i(v_i)) \geq u_i(v_i, b'_i) \]

3. deviation covering lemma: if bidder \(i \) deviates to \(b'_i = v_i / 2 \)
 \[\Rightarrow u_i(v_i, v_i/2) + E[BNE \text{ revenue}] \geq \frac{1}{2} v_i \]
 In English: either utility from deviation or revenue is high, relative to value.

4. Scale relative to \(x^*_i(v_i) = \Pr[v_i \text{ wins in OPT}] \)
 \[\Rightarrow u_i(v_i, v_i/2) + E[BNE \text{ revenue}] x^*_i(v_i) \geq \frac{1}{2} v_i x^*_i(v_i) \]

5. Sum over bidders, expectation over values:
 \[\Rightarrow E[BNE \text{ utils}] + E[BNE \text{ revenue}] \geq \frac{1}{2} E[OPT \text{ welfare}] \]
Deviation Covering Lemma: \(u_i(v_i, v_i/2) + \mathbb{E}[\text{BNE revenue}] \geq \frac{1}{2} v_i \)

Proof by Picture:
Deviation Covering Lemma

Deviation Covering Lemma: \(u_i(v_i, v_i/2) + \mathbb{E}[\text{BNE revenue}] \geq \frac{1}{2}v_i \)

\begin{itemize}
 \item from bidder \(i \) (w. value \(v_i \))
 \begin{align*}
 b'_i &= v_i/2 = \text{deviation bid} \\
 u'_i &= u_i(v_i, b'_i)
 \end{align*}
\end{itemize}

Proof by Picture:
Deviation Covering Lemma:

Deviation Covering Lemma: \(u_i(v_i, v_i/2) + E[BNE revenue] \geq \frac{1}{2} v_i \)

Proof by Picture:

- \(b_i' = v_i/2 \) = deviation bid
- \(u_i' = u_i(v_i, b_i') \) = \((v_i - b_i') \) Pr[bid \(b_i' \) wins].
Deviation Covering Lemma: \(u_i(v_i, v_i/2) + \mathbb{E}[\text{BNE revenue}] \geq \frac{1}{2} v_i \)

from bidder \(i \) (w. value \(v_i \))

- \(b'_i = v_i/2 = \text{deviation bid} \)
- \(u'_i = u_i(v_i, b'_i) = (v_i - b'_i) \cdot \Pr[\text{bid } b'_i \text{ wins}] \).

from auction (and other bids)

- \(G_i = \text{high competing bid dist.} \)

Proof by Picture:
Deviation Covering Lemma: \(u_i(v_i, v_i/2) + E[BNE \text{ revenue}] \geq \frac{1}{2}v_i \)

From bidder \(i \) (w. value \(v_i \))

- \(b'_i = v_i/2 = \text{deviation bid} \)
- \(u'_i = u_i(v_i, b'_i) = (v_i - b'_i) \Pr[\text{bid } b'_i \text{ wins}] \)
- \(\Pr[\text{competing bid } \leq b'_i] = G_i(b'_i) \)

From auction (and other bids)

- \(G_i = \text{high competing bid dist.} \)

Proof by Picture:

![Diagram illustrating the Deviation Covering Lemma](image-url)
Deviation Covering Lemma: \(u_i(v_i, v_i/2) + \mathbb{E}[\text{BNE revenue}] \geq \frac{1}{2} v_i \)

from bidder \(i \) (w. value \(v_i \))

\[b_i' = v_i/2 = \text{deviation bid} \]
\[u_i' = u_i(v_i, b_i') = (v_i - b_i') \cdot \Pr[\text{bid } b_i' \text{ wins}] \]

\[\Pr[\text{competing bid } \leq b_i'] = G_i(b_i') \]

from auction (and other bids)

\(G_i = \text{high competing bid dist.} \)
\[\mathbb{E}[\text{BNE revenue}] \geq \mathbb{E}[\text{competing bid}] \]

Proof by Picture:

[Diagram showing the relationship between bids and utilities, with \(G_i(b_i') \), \(u_i' \), and \(b_i' \) highlighted.]
Deviation Covering Lemma: \(u_i(v_i, v_i/2) + \mathbb{E}[\text{BNE revenue}] \geq \frac{1}{2} v_i \)

Proof by Picture:

- From bidder \(i \) (w. value \(v_i \))
 \[
 b'_i = v_i/2 = \text{deviation bid} \\
 u'_i = u_i(v_i, b'_i) = (v_i - b'_i) \Pr[\text{bid } b'_i \text{ wins}] \\
 \Pr[\text{competing bid } \leq b'_i] = G_i(b'_i)
 \]

- From auction (and other bids)
 \[\mathbb{E}[\text{competing bid}] \geq \mathbb{E}[\text{competing bid}] = \int_0^\infty 1 - G_i(b) \, db\]

- Diagram showing the relationship between expected revenue and bid behavior.
Deviation Covering Lemma: \(u_i(v_i, v_i/2) + \mathbb{E}[\text{BNE revenue}] \geq \frac{1}{2} v_i \)

from bidder \(i \) (w. value \(v_i \))

\[
\begin{align*}
 b'_i &= v_i / 2 = \text{deviation bid} \\
 u'_i &= u_i(v_i, b'_i) \\
 &= (v_i - b'_i) \cdot \Pr[\text{bid } b'_i \text{ wins}].
\end{align*}
\]

\[
\Pr[\text{competing bid } \leq b'_i] = G_i(b'_i)
\]

from auction (and other bids)

\[
G_i = \text{high competing bid dist.} \\
\mathbb{E}[\text{BNE revenue}] \geq \mathbb{E}[\text{competing bid}] \\
= \int_0^\infty 1 - G_i(b) \, db
\]

Proof by Picture:

\[
\begin{align*}
 \mathbb{E}[\text{comp. bid}] &\leq G_i(b'_i) \\
 u'_i &\geq 0
\end{align*}
\]
Deviation Covering Lemma

Deviation Covering Lemma: \(u_i(v_i, v_i/2) + \mathbb{E}[\text{BNE revenue}] \geq \frac{1}{2}v_i \)

from bidder \(i \) (w. value \(v_i \)):

\[
\begin{align*}
 b'_i &= v_i / 2 = \text{deviation bid} \\
 u'_i &= u_i(v_i, b'_i) \\
 &= (v_i - b'_i) \cdot \Pr[\text{bid } b'_i \text{ wins}]. \\
\end{align*}
\]

from auction (and other bids):

\[
G_i = \text{high competing bid dist.} \\
\mathbb{E}[\text{BNE revenue}] \geq \mathbb{E}[\text{competing bid}] \\
= \int_0^\infty 1 - G_i(b) \, db
\]

Proof by Picture:

\[
\begin{align*}
 \mathbb{E}[\text{comp. bid}] &= u'_i \geq \int_0^b G_i(b) \, db \\
 &= \frac{1}{2} \times v_i
\end{align*}
\]
Questions?
Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou ’99]
Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou ’99]

Typical PoA analysis:

- does not solve for equilibrium
The Price of Anarchy

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou ’99]

Typical PoA analysis:

- does not solve for equilibrium
- instead derives bounds from “best-response arguments”
Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou ’99]

Typical PoA analysis:

- does not solve for equilibrium
- instead derives bounds from “best-response arguments”
- isolate best response argument in *smoothness definition* [cf. Roughgarden ’09, ’12]
Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou ’99]

Typical PoA analysis:

- does not solve for equilibrium
- instead derives bounds from “best-response arguments”
- isolate best response argument in *smoothness definition* [cf. Roughgarden ’09, ’12]
- smoothness implies low PoA in game and extensions.
The Price of Anarchy

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou ’99]

Typical PoA analysis:

- does not solve for equilibrium
- instead derives bounds from “best-response arguments”
- isolate best response argument in *smoothness definition* [cf. Roughgarden ’09, ’12]
- smoothness implies low PoA in game and extensions. (e.g., smoothness + Bayesian extension + composition extension.) [Syrgkanis, Tardos ’13]
Definition: the price of anarchy (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou ’99]

Typical PoA analysis:

- does not solve for equilibrium
- instead derives bounds from “best-response arguments”
- isolate best response argument in smoothness definition [cf. Roughgarden ’09, ’12]
- smoothness implies low PoA in game and extensions. (e.g., smoothness + Bayesian extension + composition extension.) [Syrgkanis, Tardos ’13]

This tutorial: PoA for auctions (as games of incomplete information)
Overview of Tutorial

Part I: Introduction and motivation.

Part II: Smoothness Framework
(extension theorems, correlated dists., auction composition)

... coffee break ...

Part III: Standard Examples
(position auctions, multi-unit auctions, matching markets, combinatorial auctions)

Part IV: BNE Characterization and Consequences
(BNE characterization, symmetric BNE, solving, uniqueness, revenue)
Questions?