The Price of Anarchy in Auctions Part I: Introduction and Motivation

Jason Hartline

Vasilis Syrgkanis

Northwestern University

Cornell University

December 11, 2013

Single-item Auction Problem

Single-item Auction Problem:

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize utility = value price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Single-item Auction Problem

Single-item Auction Problem:

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize utility = value price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

- Maximize social welfare, i.e., the value of the winner.
- Maximize seller revenue, i.e., the payment of the winner.

The First-price Auction

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner her bid.

The First-price Auction

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner her bid.

Question: How should you bid?

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Expectation: $\mathbf{E}[v] = \int_0^\infty v f(v) \, dv = \int_0^\infty (1 - F(v)) \, dv$

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Expectation: $\mathbf{E}[v] = \int_0^\infty v f(v) \, dv = \int_0^\infty (1 - F(v)) \, dv$

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Expectation: $\mathbf{E}[v] = \int_0^\infty v f(v) \, dv = \int_0^\infty (1 - F(v)) \, dv = 1/2$

Example: two bidders (you and me), uniform values.

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

 $\mathbf{E}[\text{utility}(v, b)] = (v - b) \times \mathbf{Pr}[\text{you win}]$

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{split} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid} \le b] = \Pr[\frac{1}{2}\text{my value} \le b] = \Pr[\text{my value} \le 2b] = F(2b) = 2b} \end{split}$$

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

Ε

- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \left[\text{utility}(v, b) \right] &= (v - b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid} \le b] = \Pr\left[\frac{1}{2}\text{my value} \le b\right] = \Pr[\text{my value} \le 2b] = F(2b) = 2b} \\ &= (v - b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{split} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = F(2b) = 2b} \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{split}$$

• to maximize, take derivative $\frac{d}{db}$ and set to zero, solve

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{split} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = F(2b) = 2b} \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{split}$$

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{split} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid} \le b] = \Pr[\frac{1}{2}\text{my value} \le b] = \Pr[\text{my value} \le 2b] = F(2b) = 2b} \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{split}$$

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is equilibrium.

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{split} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = F(2b) = 2b} \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{split}$$

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is equilibrium.Conclusion 2: bidder with highest value winsConclusion 3: first-price auction maximizes social welfare!

Questions?

Bayes-Nash equilibrium (BNE) _____

Def: a *strategy* maps value to bid, i.e., $b_i(v_i)$.

Bayes-Nash equilibrium (BNE)

Def: a *strategy* maps value to bid, i.e., $b_i(v_i)$.

Def: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Def: a strategy maps value to bid, i.e., $b_i(v_i)$.

Def: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Definition: a *strategy profile* is in *Bayes-Nash Equilibrium (BNE)* if for all i, $b_i(v_i)$ is best response when others play $b_j(v_j)$ and $v_j \sim F_j$.

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

•
$$b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$$

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

•
$$b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$$

• highest-valued agent may not win in BNE \Rightarrow PoA > 1.

2/3+

 $\mathbf{0}$

()

 $b_1(v)$

1

 $b_2(v)$

2

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

•
$$b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$$

• highest-valued agent may not win in BNE \Rightarrow PoA > 1.

2/3+

(]

 $b_1(v)$

1

 $b_2(v)$

 $\mathbf{2}$

Asymmetric Equilibrium Solutions:

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

•
$$b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$$

• highest-valued agent may not win in BNE \Rightarrow PoA > 1.

2/3+

 $b_1(v)$

1

 $b_2(v)$

 $\mathbf{2}$

Asymmetric Equilibrium Solutions:

one uniform bidder, one constant bidder [Vickrey '61]

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

•
$$b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$$

• highest-valued agent may not win in BNE \Rightarrow PoA > 1.

2/3+

 $b_1(v)$

1

 $b_2(v)$

 $\mathbf{2}$

Asymmetric Equilibrium Solutions:

- one uniform bidder, one constant bidder [Vickrey '61]
- $U[lpha, eta_1]$, $U[lpha, eta_2]$ [Greismer et al '67]

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

•
$$b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$$

• highest-valued agent may not win in BNE \Rightarrow PoA > 1.

2/3+

 $b_1(v)$

1

 $b_2(v)$

2

Asymmetric Equilibrium Solutions:

- one uniform bidder, one constant bidder [Vickrey '61]
- $U[lpha, eta_1]$, $U[lpha, eta_2]$ [Greismer et al '67]
- $U[\alpha_1, \beta_1]$, $U[\alpha_2, \beta_2]$. [Kaplan, Samier '12]

Example: two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,2]$

•
$$b_1(v) = \frac{2}{3v}(2 - \sqrt{4 - 3v^2})$$

•
$$b_2(v) = \frac{2}{3v}(-2 + \sqrt{4 + 3v^2})$$

• highest-valued agent may not win in BNE \Rightarrow PoA > 1.

Asymmetric Equilibrium Solutions:

- one uniform bidder, one constant bidder [Vickrey '61]
- $U[lpha, eta_1]$, $U[lpha, eta_2]$ [Greismer et al '67]
- $U[\alpha_1, \beta_1]$, $U[\alpha_2, \beta_2]$. [Kaplan, Samier '12]

Notes: solved by differential equation, 50 years to solve general uniform case, only for two bidders.

 $b_1(v)$

1

 $b_2(v)$

2

Classic Analysis vs Price of Anarchy.

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner her bid.

Classic Analysis vs Price of Anarchy.

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner her bid.

Classic Analysis:

1. solve for equilibrium.

2. interpret quality of equilibrium. (e.g., for welfare or revenue)

Classic Analysis vs Price of Anarchy.

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner her bid.

Classic Analysis:

- 1. solve for equilibrium.
 - bidder strategies not obvious.
 - challenge: asymmetric distributions.
 - challenge: generalizations of single-item aucitons.
 - challenge: other auctions run at same time.
- 2. interpret quality of equilibrium. (e.g., for welfare or revenue)

Classic Analysis vs Price of Anarchy

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner her bid.

Classic Analysis:

- 1. solve for equilibrium.
 - bidder strategies not obvious.
 - challenge: asymmetric distributions.
 - challenge: generalizations of single-item aucitons.
 - challenge: other auctions run at same time.
- 2. interpret quality of equilibrium. (e.g., for welfare or revenue)

PoA Analysis: quantify performance without solving for equilibrium.

Questions?

Proof Outline:

1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - \Rightarrow **E**[bidder's BNE utility] \ge **E**[utility from deviation]

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - $\Rightarrow \underbrace{\mathbf{E}[\text{bidder's BNE utility}]}_{u_i(v_i, b_i(v_i))} \ge \underbrace{\mathbf{E}[\text{utility from deviation}]}_{u_i(v_i, b'_i)}$

Thm: for all distributions and BNE the first-price auction satisfies $\mathbf{E}[\mathbf{BNE \ welfare}] \geq \frac{1}{2}\mathbf{E}[\mathbf{OPT \ welfare}]$

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - \Rightarrow **E**[bidder's BNE utility] \ge **E**[utility from deviation]

 $u_i(v_i, b_i(v_i))$ $u_i(v_i, b'_i)$

3. *deviation covering lemma*: if bidder *i* deviates to $b'_i = v_i/2$

Thm: for all distributions and BNE the first-price auction satisfies $\mathbf{E}[\mathbf{BNE \ welfare}] \geq \frac{1}{2}\mathbf{E}[\mathbf{OPT \ welfare}]$

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - $\Rightarrow \quad \mathbf{E}[\text{bidder's BNE utility}] \ge \mathbf{E}[\text{utility from deviation}]$

 $u_i(v_i, b_i(v_i))$ $u_i(v_i, b'_i)$

- 3. deviation covering lemma: if bidder i deviates to $b'_i = v_i/2$
 - \Rightarrow $u_i(v_i, v_i/2) + \mathbf{E}[\text{BNE revenue}] \ge \frac{1}{2}v_i$

Thm: for all distributions and BNE the first-price auction satisfies $\mathbf{E}[\mathbf{BNE \ welfare}] \geq \frac{1}{2}\mathbf{E}[\mathbf{OPT \ welfare}]$

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - \Rightarrow **E**[bidder's BNE utility] \ge **E**[utility from deviation]

 $u_i(v_i, b_i(v_i))$ $u_i(v_i, b'_i)$

3. deviation covering lemma: if bidder i deviates to $b'_i = v_i/2$

$$\Rightarrow$$
 $u_i(v_i, v_i/2) + \mathbf{E}[\text{BNE revenue}] \ge \frac{1}{2}v_i$

In English: either utility from deviation or revenue is high, relative to value.

Thm: for all distributions and BNE the first-price auction satisfies $\mathbf{E}[\mathbf{BNE \ welfare}] \geq \frac{1}{2}\mathbf{E}[\mathbf{OPT \ welfare}]$

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - $\Rightarrow \quad \mathbf{E}[\text{bidder's BNE utility}] \ge \mathbf{E}[\text{utility from deviation}]$

 $u_i(v_i, b_i(v_i))$ $u_i(v_i, b'_i)$

3. deviation covering lemma: if bidder *i* deviates to $b'_i = v_i/2$

 $\Rightarrow \quad u_i(v_i, v_i/2) + \mathbf{E}[\mathsf{BNE revenue}] \ge \frac{1}{2}v_i$

In English: either utility from deviation or revenue is high, relative to value.

4. Scale relative to $x_i^*(v_i) = \Pr[v_i \text{ wins in OPT}]$

Thm: for all distributions and BNE the first-price auction satisfies $\mathbf{E}[\mathbf{BNE \ welfare}] \geq \frac{1}{2}\mathbf{E}[\mathbf{OPT \ welfare}]$

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - $\Rightarrow \quad \mathbf{E}[\text{bidder's BNE utility}] \ge \mathbf{E}[\text{utility from deviation}]$

 $u_i(v_i, b_i(v_i))$ $u_i(v_i, b'_i)$

3. *deviation covering lemma*: if bidder *i* deviates to $b'_i = v_i/2$ $\Rightarrow u_i(v_i, v_i/2) + \mathbf{E}[\text{BNE revenue}] \ge \frac{1}{2}v_i$

In English: either utility from deviation or revenue is high, relative to value.

4. Scale relative to $x_i^*(v_i) = \Pr[v_i \text{ wins in OPT}]$ $\Rightarrow \quad u_i(v_i, v_i/2) + \mathbb{E}[\mathbb{BNE revenue}] x_i^*(v_i) \ge \frac{1}{2}v_i x_i^*(v_i)$ The Price of Anarchy

Thm: for all distributions and BNE the first-price auction satisfies $\mathbf{E}[\mathbf{BNE \ welfare}] \geq \frac{1}{2}\mathbf{E}[\mathbf{OPT \ welfare}]$

Proof Outline:

- 1. Decompose E[BNE welfare] = E[BNE utilities] + E[BNE revenue].
- 2. Lowerbound BNE utility by deviation utility
 - $\Rightarrow \quad \underbrace{\mathsf{E}[\mathsf{bidder's} \mathsf{BNE} \mathsf{utility}]}_{\geq} \underbrace{\mathsf{E}[\mathsf{utility} \mathsf{from deviation}]}_{\leq}$

 $u_i(v_i, b_i(v_i))$ $u_i(v_i, b'_i)$

3. *deviation covering lemma*: if bidder *i* deviates to $b'_i = v_i/2$ $\Rightarrow u_i(v_i, v_i/2) + \mathbf{E}[\text{BNE revenue}] \ge \frac{1}{2}v_i$

In English: either utility from deviation or revenue is high, relative to value.

- 4. Scale relative to $x_i^*(v_i) = \Pr[v_i \text{ wins in OPT}]$ $\Rightarrow \quad u_i(v_i, v_i/2) + \mathbb{E}[\mathbb{BNE revenue}] x_i^*(v_i) \ge \frac{1}{2}v_i x_i^*(v_i)$
- 5. Sum over bidders, expectation over values: $\Rightarrow \quad \mathbf{E}[\mathbf{BNE \ utils}] + \mathbf{E}[\mathbf{BNE \ revenue}] \ge \frac{1}{2}\mathbf{E}[\mathbf{OPT \ welfare}]$

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

from bidder i (w. value v_i) $b'_i = v_i/2 = \text{deviation bid}$ $u'_i = u_i(v_i, b'_i)$

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

from bidder i (w. value v_i) $b'_i = v_i/2 = \text{deviation bid}$ $u'_i = u_i(v_i, b'_i)$ $= (v_i - b'_i) \Pr[\text{bid } b'_i \text{ wins}].$

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

from bidder i (w. value v_i)from auction (and other bids) $b'_i = v_i/2 =$ deviation bid $G_i =$ high competing bid dist. $u'_i = u_i(v_i, b'_i)$ $= (v_i - b'_i)$ Pr[bid b'_i wins].

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

from bidder i (w. value v_i)from auction (and other bids) $b'_i = v_i/2 =$ deviation bid $G_i =$ high competing bid dist. $u'_i = u_i(v_i, b'_i)$ $\mathbf{Pr}[\operatorname{bid} b'_i \operatorname{wins}]$. $\mathbf{Pr}[\operatorname{competing bid} \leq b'_i] = G_i(b'_i)$ $\mathbf{F}[\operatorname{competing bid} \leq b'_i] = G_i(b'_i)$

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

from bidder i (w. value v_i)from auction (and other bids) $b'_i = v_i/2 =$ deviation bid $G_i =$ high competing bid dist. $u'_i = u_i(v_i, b'_i)$ $Pr[bid b'_i wins]$. $= (v_i - b'_i) Pr[bid b'_i wins]$.E[BNE revenue] $Pr[competing bid \le b'_i] = G_i(b'_i)$ E[competing bid]

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

 $\begin{aligned} & \text{from bidder } i \text{ (w. value } v_i \text{)} \\ & b'_i = v_i/2 = \text{deviation bid} \\ & u'_i = u_i(v_i, b'_i) \\ & = (v_i - b'_i) \underbrace{\Pr[\text{bid } b'_i \text{ wins}]}_{\Pr[\text{competing bid } \leq b'_i] = G_i(b'_i)} \end{aligned} \qquad \begin{aligned} & \text{from auction (and other bids)} \\ & G_i = \text{high competing bid dist.} \\ & \textbf{E}[\text{BNE revenue}] \\ & \geq \textbf{E}[\text{competing bid}] \\ & = \int_0^\infty 1 - G_i(b) \, db \end{aligned}$

Deviation Covering Lemma: $u_i(v_i, v_i/2) + \mathsf{E}[\mathsf{BNE revenue}] \geq \frac{1}{2}v_i$

 $\begin{aligned} & \text{from bidder } i \text{ (w. value } v_i \text{)} \\ & b'_i = v_i/2 = \text{deviation bid} \\ & u'_i = u_i(v_i, b'_i) \\ & = (v_i - b'_i) \underbrace{\Pr[\text{bid } b'_i \text{ wins}]}_{\Pr[\text{competing bid } \leq b'_i] = G_i(b'_i)} \end{aligned} \qquad \begin{aligned} & \text{from auction (and other bids)} \\ & G_i = \text{high competing bid dist.} \\ & \textbf{E}[\text{BNE revenue}] \\ & \geq \textbf{E}[\text{competing bid}] \\ & = \int_0^\infty 1 - G_i(b) \, db \end{aligned}$

Questions?

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou '99]

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou '99]

Typical PoA analysis:

• does not solve for equilibrium

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou '99]

- does not solve for equilibrium
- instead derives bounds from "best-response arguments"

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou '99]

- does not solve for equilibrium
- instead derives bounds from "best-response arguments"
- isolate best response argument in *smoothness definition* [cf. Roughgarden '09, '12]

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou '99]

- does not solve for equilibrium
- instead derives bounds from "best-response arguments"
- isolate best response argument in *smoothness definition* [cf. Roughgarden '09, '12]
- smoothness implies low PoA in game and extensions.

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou '99]

- does not solve for equilibrium
- instead derives bounds from "best-response arguments"
- isolate best response argument in *smoothness definition* [cf. Roughgarden '09, '12]
- smoothness implies low PoA in game and extensions.
 (e.g., smoothness + Bayesian extension + composition extension.)
 [Syrgkanis, Tardos '13]

The Price of Anarchy

Definition: the *price of anarchy* (PoA) is the worst-case ratio of the optimal objective to objective in equilibrium. [Koutsoupias, Papadimitriou '99]

Typical PoA analysis:

- does not solve for equilibrium
- instead derives bounds from "best-response arguments"
- isolate best response argument in *smoothness definition* [cf. Roughgarden '09, '12]
- smoothness implies low PoA in game and extensions.
 (e.g., smoothness + Bayesian extension + composition extension.)
 [Syrgkanis, Tardos '13]

This tutorial: PoA for auctions (as games of incomplete information)

Part I: Introduction and motivation.

Part II: Smoothness Framework

(extension theorems, correlated dists., auction composition)

 \cdots coffee break \cdots

Part III: Standard Examples

(position auctions, multi-unit auctions, matching markets, combinatorial auctions)

Part IV: BNE Characterization and Consequences

(BNE characterization, symmetric BNE, solving, uniqueness, revenue)

Questions?